точки лежащей ободе колеса

20264
Найти радиус R вращающегося колеса, если известно, что линейная скорость точки v1, лежащей на его ободе, в n = 2,5 раза больше линейной скорости точки v2, лежащей на δх = 6,0 см ближе к оси колеса.

40539
Найти угловое ускорение колеса, если известно, что через 7 с после начала равноускоренного движения вектор полного ускорения точки, лежащей на ободе, составляет угол 13° с направлением линейной скорости этой точки.

40625
Найти радиус вращающегося колеса, если известно, что линейная скорость точки, лежащей на ободе колеса, в 4 раза больше линейной скорости точки, находящейся на 28 см ближе к оси колеса.

40702
Колесо радиусом R = 0,1 м вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением φ = A+Bt+Ct2, где B = 2 рад/с, C = 1 рад/с2. Для точек, лежащих на ободе колеса, найти через время t = 2с после начала движения: а) угловую скорость ω; б) линейную скорость v; в) угловое ускорение ε; г) тангенциальное ускорение aτ; д) нормальное ускорение an.

14168
Зависимость угла поворота радиуса вращающегося колеса от времени дана уравнением: φ = 4 + 5t2 – t3. Найти в конце первой секунды вращения угловую скорость колеса, а также линейную скорость и полное ускорение точки, лежащей на ободе колеса радиусом 20 см.

14169
Зависимость угла поворота радиуса вращающегося колеса от времени дана уравнением: φ = 4t + 5t2 – t3. Найти в конце второй секунды вращения угловую скорость колеса, а также линейную скорость и полное ускорение точки, лежащей на ободе колеса. Радиус колеса 2 см.

15941
Колесо радиусом R = 0,15 м вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением φ = А + Bt + Ct3, где В = 3 рад/с и С = 4 рад/с3. Найти для точек, лежащих на ободе колеса через t = 1,5 сек после начала движения: 1) угловую скорость; 2) линейную скорость; 3) угловое ускорение; 4) тангенциальное ускорение; 5) нормальное ускорение; 6) полное ускорение.

15944
Колесо радиусом R = 0,5 м вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением φ = А + Bt + Ct3, где В = 3 рад/с и С = 4 рад/с3. Найти для точек, лежащих на ободе колеса через t = 3,0 сек после начала движения: 1) угловую скорость; 2) линейную скорость; 3) угловое ускорение; 4) тангенциальное ускорение; 5) нормальное ускорение; 6) полное ускорение.

15945
Колесо радиусом R = 0,3 м вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением φ = А + Bt + Ct3, где В = 1 рад/с и С = 7 рад/с3. Найти для точек, лежащих на ободе колеса через t = 1,5 сек после начала движения: 1) угловую скорость; 2) линейную скорость; 3) угловое ускорение; 4) тангенциальное ускорение; 5) нормальное ускорение; 6) полное ускорение.

15948
Колесо радиусом R = 0,25 м вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением φ = А + Bt + Ct3, где В = 5 рад/с и С = 4 рад/с3. Найти для точек, лежащих на ободе колеса через t = 1,5 сек после начала движения: 1) угловую скорость; 2) линейную скорость; 3) угловое ускорение; 4) тангенциальное ускорение; 5) нормальное ускорение; 6) полное ускорение.

16135
Колесо вращается так, что зависимость угла поворота радиуса колеса от времени определяется уравнением φ(t) = 1 + 2t – 2t3, рад. Нормальное ускорение точек, лежащих на ободе колеса к концу второй секунды движения, равно 200 м/с2. Вычислите:
1) зависимость линейной и угловой скоростей, линейного и углового ускорений от времени;
2) радиус колеса;
3) угловую скорость и ускорение, тангенциальное и полное ускорение в конце 2-ой секунды движения.

16311
Диск вращается так, что зависимость угла поворота радиуса диска от времени определяется уравнением: φ(t) = 2 + 4t – 4t3 (рад). Нормальное ускорение точек, лежащих на ободе колеса к концу второй секунды движения равно 250 м/с. Определить: 1) зависимость линейных и угловых скоростей и ускорений от времени; 2) радиус диска; 3) угловую скорость и ускорение (тангенциальное и полное) в конце второй секунды движения.

20068
Зависимость угла поворота радиуса (r = 2 м) вращающегося колеса от времени задана уравнением φ = 4+5t–t3. Найти угловую скорость и полное ускорение точки, лежащей на ободе колеса, в конце первой секунды вращения. Каковы средние скорость и ускорение за это время?

21345
Найти угловое ускорение колеса, если известно, что через 2,0с после начала равноускоренного движения вектор полного ускорения точки, лежащей на ободе, составляет угол 45° с направлением линейной скорости этой точки.