Скорость точки, лежащей на ободе
13260
Маховик диаметром 18 см вращается на оси электродвигателя с частотой 20 об/с. После отключения электрического тока маховик вместе с ротором электродвигателя совершил 120 оборотов и остановился. Найти и написать закон изменения угловой скорости маховика, и законы изменения нормального и тангенциального ускорения (для точек, лежащих на ободе маховика) от времени.
13320
Диск радиусом R = 10 см вращается так, что зависимость линейной скорости точек, лежащих на ободе диска, от времени задается уравнением v = At+Bt2 (А = 0,3 м/с2, B = 0,1 м/с3). Определите угол α, который образует вектор полного ускорения а с радиусом колеса через 2 с от начала движения.
13321
Диск радиусом R = 10 см вращается так, что зависимость линейной скорости точек, лежащих на ободе диска, от времени задается уравнением v = At+Bt2 (А = 0,3 м/с2, B = 0,1 м/с3). Определите момент времени, для которого вектор полного ускорения а образует с радиусом колеса угол φ = 4°.
13463
На дне сосуда в виде усеченного конуса с основаниями r = 98 см и R = 108 см и высотой h = 49 см лежит шар. Что произойдет с ним при угловой скорости сосуда ω1 = 5,5 рад/с, ω2 = 9 рад/с?
14167
Зависимость угла поворота радиуса вращающегося колеса от времени дана уравнением: φ = 4 + 5t – t2. Найти угловую и линейную скорость вращения колеса, а также полное ускорение точки, лежащей на ободе колеса в конце первой секунды вращения. Радиус колеса 20 см.
15940
Колесо радиусом R = 0,2 м вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением φ = А + Bt + Ct3, где В = 5 рад/с и С = 6 рад/с3. Найти для точек, лежащих на ободе колеса через t = 2,5 сек после начала движения: 1) угловую скорость; 2) линейную скорость; 3) угловое ускорение; 4) тангенциальное ускорение; 5) нормальное ускорение; 6) полное ускорение.
15942
Колесо радиусом R = 0,25 м вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением φ = А + Bt + Ct3, где В = 7 рад/с и С = 3 рад/с3. Найти для точек, лежащих на ободе колеса через t = 3,0 сек после начала движения: 1) угловую скорость; 2) линейную скорость; 3) угловое ускорение; 4) тангенциальное ускорение; 5) нормальное ускорение; 6) полное ускорение.
15943
Колесо радиусом R = 0,1 м вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением φ = А + Bt + Ct3, где В = 2 рад/с и С = 8 рад/с3. Найти для точек, лежащих на ободе колеса через t = 2,0 сек после начала движения: 1) угловую скорость; 2) линейную скорость; 3) угловое ускорение; 4) тангенциальное ускорение; 5) нормальное ускорение; 6) полное ускорение.
15946
Колесо радиусом R = 0,45 м вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением φ = А + Bt + Ct3, где В = 4 рад/с и С = 2 рад/с3. Найти для точек, лежащих на ободе колеса через t = 3,0 сек после начала движения: 1) угловую скорость; 2) линейную скорость; 3) угловое ускорение; 4) тангенциальное ускорение; 5) нормальное ускорение; 6) полное ускорение.
15947
Колесо радиусом R = 0,5 м вращается так, что зависимость угла поворота радиуса колеса от времени дается уравнением φ = А + Bt + Ct3, где В = 1 рад/с и С = 3 рад/с3. Найти для точек, лежащих на ободе колеса через t = 2,5 сек после начала движения: 1) угловую скорость; 2) линейную скорость; 3) угловое ускорение; 4) тангенциальное ускорение; 5) нормальное ускорение; 6) полное ускорение.
19609
Диск радиусом R = 10 см вращается так, что зависимость линейной скорости точек, лежащих на ободе диска, от времени задается уравнением v = At + Bt2 (A = 0,3 м/с2, В = 0,1 м/с3). Определите момент времени, для которого вектор полного ускорения a образует с радиусом колеса угол φ = 4°.
19828
Вращение колеса задается уравнением φ(t) = A+Bt+Ct3, где A = 3 рад, B = 2 рад/с, C = 1 рад/с3. Радиус колеса равен 1 м. Для точки, лежащей на ободе колеса, найти через t = 3 с после начала движения угловую и линейную скорости, угловое, тангенциальное и нормальное ускорения.
20734
Колесо радиусом R = 10 см вращается так, что зависимость угла поворота радиуса колеса от времени задана уравнением φ = 3+2t2+t3, где φ — в радианах, t — в секундах . Найдите для точек, лежащих на ободе колеса: а) линейную скорость, б) нормальное ускорение и в) угловое ускорение ε для момента времени t = 3 с.
23986
Время разгона автомобиля до скорости 130 км/ч составляет 13 секунд. Каковы в момент окончания разгона автомобиля центростремительное, тангенциальное и полное ускорения точек, расположенных на ободе колеса при разгоне (относительно автомобиля)? Диаметр колеса равен 0,5 м.