заряд равномерно распределен по сфере радиусом с поверхностной

заряд равномерно распределен по сфере радиусом с поверхностной

10202
На двух концентрических сферах радиусом R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского—Гаусса, найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = 4σ, σ2 = σ; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r, и указать направление вектора Е. Принять σ = 30 нКл/м2, r = 1,5R; 3) построить график E(r).

10203
На двух концентрических сферах радиусом R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского—Гаусса, найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = σ, σ2 = –σ; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r, и указать направление вектора Е. Принять σ = 0,1 мкКл/м2, r = 3R; 3) построить график E(r).

10204
На двух концентрических сферах радиусом R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского—Гаусса, найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = –4σ, σ2 = σ; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r, и указать направление вектора Е. Принять σ = 50 нКл/м2, r = 1,5R; 3) построить график E(r).

10205
На двух концентрических сферах радиусом R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского—Гаусса, найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = –2σ, σ2 = σ; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r, и указать направление вектора Е. Принять σ = 0,1 мкКл/м2, r = 3R; 3) построить график E(r).

60148
Две концентрические сферы с радиусами 2 см и 4 см имеют заряды 10–8 Кл и 2·10–8 Кл. Заряды распределены равномерно. Какую работу совершают силы электрического поля при перемещении точечного заряда 10–10 Кл из точки, расположенной в 3 см от центра сфер, в точку, расположенную в 6 см от центра сфер?

60402
Радиусы двух проводящих концентрических сфер 31 см и 347 см. На каждой сфере равномерно распределен заряд +487 нКл. Найти разность потенциалов между сферами.

10203
На двух концентрических сферах радиусом R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского—Гаусса, найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = σ, σ2 = –σ; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r, и указать направление вектора Е. Принять σ = 0,1 мкКл/м2, r = 3R; 3) построить график E(r).

10204
На двух концентрических сферах радиусом R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского—Гаусса, найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = –4σ, σ2 = σ; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r, и указать направление вектора Е. Принять σ = 50 нКл/м2, r = 1,5R; 3) построить график E(r).

10205
На двух концентрических сферах радиусом R и 2R равномерно распределены заряды с поверхностными плотностями σ1 и σ2. Требуется: 1) используя теорему Остроградского—Гаусса, найти зависимость Е(r) напряженности электрического поля от расстояния для трех областей: I, II и III. Принять σ1 = –2σ, σ2 = σ; 2) вычислить напряженность Е в точке, удаленной от центра на расстояние r, и указать направление вектора Е. Принять σ = 0,1 мкКл/м2, r = 3R; 3) построить график E(r).

12367
На двух концентрических сферах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 = –120 нКл/м2 и σ2 = 30 нКл/м2 (рис. 1). Используя теорему Остроградского – Гаусса, найти зависимость Е(r) напряженности электрического поля от координаты для трех областей: I, II и III. Вычислить напряженность Е электрического поля в точке, удаленной от центра на расстояние r = 1,5R, и указать направление вектора Е. Построить график зависимости Е(r).

12368
На двух концентрических сферах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями σ1 = 120 нКл/м2 и σ2 = 30 нКл/м2 (рис. 1). Используя теорему Остроградского – Гаусса, найти зависимость Е(r) напряженности электрического поля от координаты для трех областей: I, II и III. Вычислить напряженность Е электрического поля в точке, удаленной от центра на расстояние r = 1,5R, и указать направление вектора Е. Построить график зависимости Е(r).
два круга с общим центром

13236
Сферическая поверхность радиусом R = 0,1 м несет равномерно распределенный по ней заряд с поверхностной плотностью σ = 2·10–7 Кл/м2. Вне сферы на расстоянии R от ее поверхности находится точечный заряд q = 4·10–8 Кл (см. рис. 14.2.). Найти напряженность и потенциал электрического поля в центре сферы.
Сферическая заряженная поверхность и точечный заряд вне ее

13626
Сферы, изображенные на рис 14.1, имеют радиусы по 0,05 м и заряды q1 = -46 мкКл и q2 = 46 мкКл, которые равномерно распределены по их поверхностям. Расстояние между центрами сфер 20 см. Рассчитать напряженность и потенциал электрического поля в точке D, которая находится внутри отрицательно заряженной сферы в непосредственной близости от ее стенки.
Два заряженных шара

14608
Два коаксиальных цилиндра несут на себе равномерно распределенный заряд с поверхностными плотностями σ1 и σ2. Используя теорему Гаусса, определить напряженность электрического поля в зависимости от расстояния до оси r. Принять σ1 = –σ, σ2 = –2σ, где σ = 10 нКл/м2. Радиусы сфер R1 = R и R2 = 5R, где R = 10 см. Построить график зависимости напряженности E(r).

15284
Объемный заряд с плотностью 2 нКл/м3 равномерно распределен между двумя концентрическими сферическими поверхностями, причем радиус внутренней поверхности 10 см, а наружной — 50 см. Найдите напряженность поля в точках, отстоящих от центра сфер на расстояниях r1 = 3 см и r2 = 56 см.

15713
На двух концентрических сферах равномерно распределенный заряд с поверхностными плотностями σ1 = 3σ и σ2 = –σ, где σ = 10 нКл/м2. Радиусы сфер R и 2R, где R = 10 см. Определить напряженность электрического поля в зависимости от расстояния до оси r. Найти зависимость E(r), вычислить E(R1), E(R2), если R1 = 1,5R, R2 = 3R. Построить график зависимости напряженности Е(r).
На двух концентрических сферах равномерно распределен заряд

19199
На двух концентрических сферах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями, равными σ1 и σ2. Найти зависимость напряженности E электрического поля от r, где r — расстояние от центра сфер. Принять σ1 = –2σ, σ2 = σ. Построить график зависимости Е(r).

20554
Две металлические концентрические сферы радиусами 15 и 30 см расположены в воздухе. На внутренней сфере распределен заряд –2·10–8 Кл, а потенциал внешней сферы равен 450 В. Вычислить напряженность и потенциал в точках, удаленных от центра сфер на 10 и 20 см.

20869
По сфере радиуса R = 10 см равномерно распределен заряд Q = 10–8 Кл. Сфера вращается с частотой f = 10 1/c относительно оси, проходящей через центр сферы. Найти магнитный момент кругового тока, создаваемого вращающейся сферой.

21620
На двух концентрических сферах радиусами R и 2R равномерно распределены заряды с поверхностными плотностями соответственно σ1 и σ2. Используя теорему Гаусса, определить модуль и направление напряженности электрического поля в точке, удаленной от центра сфер на расстояние r. Принять σ1 = –8σ, σ2 = σ, r = 1,7R.

21784
Две концентрические сферы радиусами R и 2R равномерно заряжены зарядами q1 и q2. Найти напряженности E1, Е2, и Е3 поля в точках, отстоящих от центра сфер на расстояния r1, r2 и r3 соответственно (ε = 1), если r1 < R < r2 < 2R < r3.

22814
Две концентрические сферы несут на себе равномерно распределенный заряд с поверхностными плотностями σ1 и σ2. Используя теорему Гаусса Определить напряженность электрического поля в зависимости от расстояния до центра сфер r. Принять σ1 = σ, σ2 = –σ, где σ = 10 нКл/м2. Радиусы сфер R1 = R и R2 = 3R, где R = 10 см. Построить график зависимости напряженности Е(r).

503 Service Temporarily Unavailable

Server Error

503

Service Temporarily Unavailable

The server is temporarily unable to service your request due to maintenance downtime or capacity problems. Please try again later.


That's what you can do